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Abstract
In modern information retrieval (IR), going beyond accuracy is cru-
cial for maintaining a healthy ecosystem, particularly in meeting
fairness and diversity requirements. To address these needs, various
datasets, algorithms, and evaluation methods have been developed.
These algorithms are often tested with different metrics, datasets,
and experimental settings, making comparisons inconsistent and
challenging. Consequently, there is an urgent need for a compre-
hensive IR toolkit, enabling standardized assessments of fairness-
and diversity-aware algorithms across IR tasks. To address these
issues, we introduce an open-source standardized toolkit called
FairDiverse. First, FairDiverse provides a comprehensive frame-
work for incorporating fairness- and diversity-aware approaches,
including pre-processing, in-processing, and post-processing meth-
ods, into different pipeline stages of IR. Second, FairDiverse en-
ables the evaluation of 29 fairness, and diversity algorithms across
16 base models for two fundamental IR tasks—search and rec-
ommendation—facilitating the establishment of a comprehensive
benchmark. Finally, FairDiverse is highly extensible, offering mul-
tiple APIs to enable IR researchers to quickly develop their own
fairness- and diversity-aware IR models, and allows for fair com-
parisons with existing baselines. The project is open-sourced on
GitHub: https://github.com/XuChen0427/FairDiverse.
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1 Introduction
Information retrieval (IR) tasks, such as search and recommen-
dation, typically aim to select the information that meets user
needs [16, 68]. In modern IR, factors beyond the accuracy of in-
formation access, such as novelty, diversity, and fairness, are cru-
cial for building a healthy ecosystem [42]. Among these factors,
fairness and diversity have gained increasing attention in recent
years [22, 43, 54]. Both aim to expose users to a broader range of
information sources [23, 54] while also supporting diverse types of
providers [48, 61].

To ensure fairness and diversity in IR systems, many fairness-
aware [15, 31, 46, 48, 53, 58, 61, 65] and diversity-aware algorithms [43,
50, 54, 71] have been designed as plugins or modules that can be
integrated into various stages of the IR pipeline. However, fairness
and diversity often suffer from a lack of unified definitions [20, 43].
As a result, the evaluation of these algorithms in IR systems is based
on different metrics, datasets, and evaluation settings (details are
shown in Section 7). Hence, the performance of these algorithms
cannot be compared consistently. Developing a unified, fair, and ex-
tensible toolkit for fairness and diversity is critically important and
urgently needed to evaluate these algorithms consistently across IR
tasks. Such a toolkit framework holds significant value for fostering
a trustworthy IR community.

To create a unified and equitable evaluation, we introduce Fair-
Diverse, an open-source standardized toolkit designed to assess
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Figure 1: Overall architecture of FairDiverse. We categorize fairness- and diversity-aware algorithms into pre-processing,
in-processing, and post-processing stages, corresponding to data processing, model training, and result evaluation phases of IR.
Table 1: Comparison between existing fairness- and diversity-
aware toolkits. ✗ denotes that the feature is not supported,
while ✓ indicates that the feature is supported.
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Recommendation ✓ ✗ ✗ ✗ ✗ ✓

Search ✗ ✗ ✗ ✗ ✗ ✓

Pre-processing ✗ ✗ ✓ ✓ ✓ ✓

In-processing ✓ ✓ ✓ ✓ ✓ ✓

Post-processing ✗ ✗ ✓ ✓ ✓ ✓

Number of models 4 6 6 15 10 29

fairness and diversity in IR systems. First, FairDiverse offers de-
tailed guidance on incorporating fairness- and diversity-aware al-
gorithms throughout various stages of the IR process. These al-
gorithms are categorized into pre-processing, in-processing, and
post-processing methods, corresponding to data processing, model
training, and result evaluation stages in different IR pipeline steps,
respectively. Then, FairDiverse implements a wide range of fairness-
and diversity-aware models (29 models) tailored to 16 base mod-
els under two fundamental IR tasks: search and recommendation.
It offers corresponding implementation code and systematically
evaluates these algorithms using over ten accuracy, fairness, and
diversity metrics, enabling the construction of a benchmark within
FairDiverse.

In the literature, only a few open-source toolkits and libraries
have been developed for fairness- and diversity-aware IR algorithms.
Table 1 provides a comparison between these existing resources
and the proposed FairDiverse, highlighting features such as sup-
ported IR tasks (recommendation and search), algorithm types (pre-
processing, in-processing, and post-processing), and the number of
implemented models. Other toolkit details are provided in Section 7.
As shown in Table 1, FairDiverse provides the largest number of

models, offering extensive coverage of all types of fairness- and
diversity-aware algorithms. Additionally, it supports major infor-
mation retrieval (IR) tasks, including search and recommendation,
making it a versatile and comprehensive toolkit.

FairDiverse is designed to be highly extensible, providing a range
of flexible APIs that allow IR researchers to efficiently develop and
integrate their own fairness- and diversity-aware IR models. This
extensibility ensures that researchers can tailor the toolkit to their
specific needs while maintaining consistency with established eval-
uation protocols. This makes it an invaluable resource for advancing
fairness and diversity in IR systems.

2 Toolkit Overview
In this section, we illustrate the overview pipelines of FairDiverse,
as shown in Figure 1. Generally, search and recommendation tasks
in IR can be considered ranking tasks with similar pipelines [60, 75].
Next, we will detail the IR pipeline steps, incorporating fairness-
and diversity-aware algorithms.
IR data collection. First, we collect the user and item information.
Let U denote the set of users, and I the set of items. Each user
𝑢 ∈ U may have a different user profile P𝑢 such as age, gender,
occupation, etc. We will record the user’s browsing historical item
list 𝐻𝑢 = [𝑖1, 𝑖2, · · · , 𝑖𝑛]. Each item 𝑖 ∈ I is associated with specific
attributes, such as categories, descriptions, and other metadata.

When a user 𝑢 interacts with an IR system, they may actively
input a query 𝑞𝑢 to explicitly express their information need, a
scenario commonly referred to as a search task. Alternatively, the
user may not provide a query; instead, they rely on the IR system to
infer their information needs and deliver relevant content, which
characterizes a recommendation task.

Meanwhile, the collected data should also capture user behaviors,
such as clicks, ratings, and other interactions. For example, click
behavior 𝑐𝑢,𝑖 = 1 indicates that the user has clicked on the item,
while 𝑐𝑢,𝑖 = 0 signifies that the user did not interact with the item
on the browser or recommender platform. Rating behaviors 𝑟 ∈
[0, 5] denotes the preference degree of the item. These interaction
behaviors are typically regarded as labels to train the IR models.
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Table 2: The models implemented in FairDiverse.

Model types Models

Recommendation

Base model DMF [70], BPR [52], GRU4Rec [56], SASRec [39], Llama3 [26], Qwen2 [4], Mistral [34]
In-processing APR [31], DPR [84], FairDual [62], FairNeg [15], FOCF [76], IPS [35], Reg [38], Minmax-SGD [2], SDRO [58], Fair-

Prompts [63]
Post-processing P-MMF [61], CP-Fair [46], FairRec [48], FairRec+ [9], FairSync [64], min-regularizer [61], Tax-Rank [65], Welf [25],

RAIF [44], ElasticRank [67]

Search

Base model MART [29], RankNet [11], RankBoost [28], AdaRank [69], Coordinate Ascent [45], LambdaMART [59], ListNet [13],
Random Forests [10]

Pre-processing CIF-Rank [74], LFR [77], gFair, iFair [41]
Post-processing PM2 [22], xQuAD [55], DESA [49], DALETOR [72], DiversePrompts (based on GPT-4o [47] and Claude 3.5 [3])

Data processing. After collecting the IR data, it is essential to
preprocess the dataset by filtering out noisy data samples, such as
removing users with very few interaction histories, to ensure the
quality of the data [82]. Then, we integrate user and item informa-
tion with interaction behaviors and partition the data into training,
validation, and test sets for model training and evaluation.

The pre-processing algorithms are primarily applied at this stage,
aiming to mitigate biases present in the model input before train-
ing [53]. Specifically, certain features may enhance model perfor-
mance but are influenced by sensitive attributes such as user race,
and pre-processing methods aim to mitigate such effects by adjust-
ing certain item or user features to ensure fairness and diversity.

Pre-processing methods are typically simple, easy to integrate
with existing IR systems and offer good generalizability. However,
these methods are independent of the model and may remove cer-
tain features that are useful for the model.
Model training. After preparing the training data, we first trans-
form the raw data into vectorized representations (i.e., embeddings)
suitable for model input. Then, we design the IR models, assign
appropriate loss functions, and optimize the models based on the
defined loss functions.

The in-processing methods are mainly applied to the model
training phase. Typically, they incorporate a fairness- and diversity-
aware constraint or regularizer into the IR loss function, optimizing
it to enhance ranking accuracy while ensuring fairness or diversity
in the results [15, 31].
Result evaluation. Finally, after training the IR models, we apply
them to evaluate their performance. We use the trained IR model to
infer relevance scores for all user-item pairs in the test set. Based
on these scores, we generate a ranked list by selecting items with
the highest relevance scores for each user.

Post-processing methods are often based on a given set of rel-
evance scores and re-rank the items to form a new ranked list.
They formulate the problem as a constrained linear programming
optimization [48, 61, 65]. The objective is to maximize the sum of
relevance scores, while fairness- and diversity-aware constraints
will be incorporated to ensure a fair and diverse ranked list.

3 Toolkit Details
For package details, we introduce the datasets used, the imple-
mented models, and the evaluation metrics adopted.

3.1 Datasets
We provide details of each used dataset for recommendation and
search tasks in the following parts.

3.1.1 Recommendation. Any recommendation dataset can be used
for the recommendation task. Specifically, we use the RecBole [82]
dataset,1 which includes 43 commonly used datasets, all fully sup-
ported by our toolkit FairDiverse. The datasets span more than ten
diverse domains, including games, products, and music. FairDiverse
offers a comprehensive and fair comparison across all datasets.

To use them, researchers can simply download the datasets, place
them in the ~/recommendation/dataset directory, and config-
ure the settings in /properties/dataset/{dataset_name}.yaml.
The configuration files should specify which column names corre-
spond to user ID, item ID, group ID, and other relevant fields. Once
set up, running the command will enable algorithm evaluation on
different datasets.

3.1.2 Search. Any dataset can be used with the pre-processing
fairness models, however, in this framework we provide a working
example on the COMPAS dataset [6]. This dataset evaluates the
bias in the COMPAS risk assessment tool by Northpointe (now
Equivant), which predicts recidivism. It includes criminal history,
recidivism probability, and sensitive attributes (gender and race).
Following [74], we provide a subset of 4,162 individuals distributed
as 25% White males, 59% Black males, 6% White females, and 10%
Black females.

For post-processing settings, we use ClueWeb09 Category B data
collection [12] for our experiments.2 The ClueWeb09 dataset con-
sists of 200 queries and 40,537 unique documents from the Web
Track 2009-2012 dataset. Notably, queries #95 and #100 are not in-
cluded in our experiments due to the lack of diversity judgments.
The remaining 198 queries are associated with 3 to 8 manually an-
notated user intents, each accompanied by binary relevance ratings
assigned at the intent level.

3.2 Models
We provide all the implemented models in Table 2. Then we will
delve into the details of each model. Note that to integrate dif-
ferent models into our toolkit architecture, some models may be
1https://github.com/RUCAIBox/RecSysDatasets
2https://lemurproject.org/clueweb09.php/
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Dataset collection

~/properties/dataset/steam.yaml

user_id:  user id column

item_id:  item id column

group_id:  item group id column

label_id:  label id column

timestamp:  time stamp column

Data processing 

~/properties/dataset.yaml

item/user/group val:  filtering threshold

valid/test radio:  train-valid-test split radio

history length:  truncated user history length

sample_num:  negative sample number

reprocess: whether use the cache data

Model hyper-parameters

~/properties/models/APR.yaml

embedding size:  user/item embedding

other hyper parameters:  other values

Evaluation settings

~/properties/evaluation.yaml

topk:  ranking size, e.g. [5,10,20]

eval_step:  how many training steps to eval

watch_metric:  use the highest metric to test

decimals:  metric remaining decimals

eval_batch_size: batch size for evaluation

learning rate:  learning rate

hidden layer number:  layer number

In-processing.yaml

… … … … … … … …

python main.py --task recommendation 

--stage in-processing --dataset steam

--train_config_file In-processing.yaml

model: base model (e.g. MF)

fair-rank: applying fair-aware model or not (e.g. True)

rank_model: Fair-aware model (e.g. APR)

log_name: Your log dir (e.g. MF_APR)

*tuning variables: Set your own values for four stages

Merge

(default value)

Post-processing.yaml

python main.py --task recommendation 

--stage post-processing --dataset steam

--train_config_file Post-processing.yaml

model: post-processing algorithm (e.g. PMMF)

ranking_store_path: in-processing log path (e.g. MF_APR)

log_name: Your log dir (e.g. MF-APR-PMMF)

*tuning variables: Set your own values for four stages

Merge

(default value)

Pre-processing.yaml

python main.py --task search

--stage pre-processing --dataset steam

--train_config_file Pre-processing.yaml

model: Pre-process model (e.g. xxx)

log_name: Your log dir (e.g. xxx)

*tuning variables: Set your own values for four stages

Merge

(default value)

3. Run shell

command

2. Set your 

configuration 

file

1. Download 

dataset &

Check default

parameters

Usage steps

Figure 2: The usage of FairDiverse with three steps: (1) Download the datasets and check the default parameters of the four
stages of pipelines; (2) Set custom configuration file to execute the pipeline. The ∗tuning_variables allow you to define variable
values for the default settings across the four pipeline stages, with the In-processing configuration file overriding these default
values when specified; (3) Run the shell command, with the task, stage, dataset, and your custom configuration file.

re-implemented. As a result, their performance may vary due to
differences in implementation and experimental settings.

3.2.1 Recommendation. In the recommendation task, many mod-
els focus on in-processing and post-processing methods. First, we
categorize the base recommendation models into non-LLM (large
language model) and LLM-based models. non-LLM-based models
mainly utilize user-item interaction behaviors to learn a good repre-
sentation of users and items. LLM-basedmodels rely on the prompts
to rank the items according to their textual information such as
item titles [19, 21]. The models are:
• Non-LLM-based models:
– DMF [70]: which optimizes the matrix factorization with the
deep neural networks.

– BPR [52]: optimizes pairwise ranking via implicit feedback.
– GRU4Rec [56]: employs gated recurrent units (GRUs) for
session-based recommendations.

– SASRec [39]: leverages self-attention mechanisms to model
sequential user behavior.

• LLM-based models: Llama3 [26], Qwen2 [4], Mistral [34]: uti-
lizing rank-specific prompts to conduct ranking tasks under
LLMs [19].

We categorize in-processing models into re-weight, re-sample, reg-
ularizer, and prompt-based methods. The re-weighting and re-
sample-based method adjusts sample weights/ratios during loss
calculation, assigning higher weights/radios to underperforming
item groups to enhance their support. Regularizer-based methods
incorporate fairness- and diversity-aware regularization terms into
the original loss function. In contrast, prompt-based methods, de-
signed for LLM-based models, introduce fairness-aware prompts to
enhance support for underperforming item groups. They are:
• Re-weight-based models:
– APR [31]: an adaptive reweighing method that dynamically
prioritizes samples near the decision boundary to mitigate
distribution shifts.

– FairDual [62]: applies dual-mirror gradient descent to dy-
namically compute the weight for each sample to support the
worst-off groups.

– IPS [35]: employs the reciprocal of the sum popularity of items
within the group as the weight assigned to that group.

– Minmax-SGD [2]: applies optimizing techniques to dynami-
cally sample groups.

– SDRO [58]: Improves DRO with the distributional shift to
optimize group MMF.

• Re-sample-based models: FairNeg [15]: adjusts the group-level
negative sampling distribution in the training process.

• Regularizer-based models:
– DPR [84]: applies a fair-aware adversarial loss based on statis-
tical parity and equal opportunity.

– FOCF [76]: applies a fair-aware regularization loss of different
groups.

– Reg [38]: applies a penalty on the squared difference between
the scores of two groups across all positive user-item pairs.

• Prompt-based models: FairPrompts [63].3
We categorize the post-processingmodels into heuristic and learning-
basedmodels. Heuristic models primarily use algorithms like greedy
search to re-rank items, while learning-based models dynamically
generate fairness- and diversity-aware scores, which are incorpo-
rated into the original relevance score for re-ranking. They are:
• Heuristic models:
– CP-Fair [46]: applies a greedy solution to optimize the knap-
sack problem of fair ranking.

– min-regularizer [61]: adds an additional fairness score to the
ranking scores, capturing the gap between the current utility
and the worst-off utility.

– RAIF [44]: a model-agnostic repeat-bias-aware item fairness
optimization algorithm based onmixed-integer linear program-
ming.4

3We do not fine-tune the LLMs but only use manually designed prompts.
4Note that we remove repeat bias term, change the item fairness objective to make the
exposure of each group closer, and extend RAIF into multi-group cases.
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• Learning-based methods:
– P-MMF [61]: applies a dual-mirror gradient descent method
to optimize the accuracy-fairness trade-off problem.

– FairRec [48], FairRec+ [9]: proposes leveraging Nash equi-
librium to guarantee Max-Min Share of item exposure.

– FairSync [64]: proposes to guarantee the minimum group
utility under distributed retrieval stages.

– Tax-Rank [65]: applies the optimal transportation (OT) algo-
rithm to trade-off fairness-accuracy.

– Welf [25]: use the Frank-Wolfe algorithm to maximize the
Welfare functions of worst-off items.

– ElasticRank [67]: use elastic theory in economics to optimize
the fair re-ranking process.

3.2.2 Search. Our framework uses the Ranklib library to offer a va-
riety of rankingmodels, including 8 popular algorithms: MART [29],
RankNet [11], RankBoost [28], AdaRank [69], Coordinate Ascent
[45], LambdaMART [59], ListNet [13], Random Forests [10].

We divide pre-processing models into two categories: causal
based models and probabilistic mapping clustering models. All
model implementations are adapted to optimize for multiple sensi-
tive attributes and non-binary groups.
• Causal based models:
– CIF-Rank [74] estimates the causal effect of the sensitive
attributes on the data and makes use of them to correct for the
bias encoded.

• Probabilistic mapping clustering models: Create representations
that are independent of the available sensitive attributes.
– LFR [77] optimizes for group fairness by making sure that the
probability of a group to be mapped to a cluster is equal to the
probability of the other group.

– iFair [41] optimizes for individual fairness by making sure
that the distance between similar individuals is maintained in
the new space.

– gFair based on iFair [41], optimizes for group fairness by en-
suring that the distance between similar individuals from a
group is close to similar individuals from the other group.

For post-processing search models, we often utilize the diversity-
aware re-ranking models. These models can be roughly categorized
into unsupervised methods and supervised methods.
• Unsupervised methods:
– PM2 [22]: optimizes proportionality by iteratively determining
the topic that best maintained the overall proportionality.

– xQuAD [55]: utilizes sub-queries representing pseudo user in-
tents and diversifies document rankings by directly estimating
the relevance of the retrieved documents to each sub-queries.

– DiversePrompts: a diversity ranking model based on large
languagemodels.We design specific prompts tailored for search
result diversification based on the two latest closed-source
LLMs: GPT-4o [47] and Claude 3.5 [3].

• Supervised methods:
– DESA [49]: employs the attention mechanism to model the
novelty of documents and the explicit subtopics.

– DALETOR [72]: proposes diversification-aware losses to ap-
proach the optimal ranking.

3.3 Evaluation Metrics
We will delve into the details of each of used evaluation metrics in
the following parts.
Recommendation. In recommendation, evaluation metrics are
generally categorized into two types:
• Ranking accuracy-based metric: Mean Reciprocal Rank (MRR),
Hit Radio (HR), and Normalized Discounted Cumulative Gain
(NDCG) [68], utility loss (i.e., Regret) [61].5

• Fairness- and diversity-based metric: MMF [61], GINI index [25],
Entropy [36], and MinMaxRatio [51].

Search. For the search task, we adopt the official diversity evalua-
tion metrics of the Web Track, including ERR-IA [14], 𝛼-nDCG [17],
and the diversity measure Subtopic Recall (denoted as S-rec) [78].
These metrics assess the diversity of document rankings by explic-
itly rewarding novelty while penalizing redundancy. We follow
the Web Track and utilize the provided shell command to evaluate
model performance.

Furthermore, we provide support for fairness metrics, including
group fairness measures such as demographic parity, ensuring pro-
portional representation of groups, as well as proportional exposure
of groups. Additionally, one can compute the in-group fairness met-
ric proposed by Yang et al. [73], which computes the ratio between
the lowest accepted score and the highest rejected score within a
group. On top of group fairness, one can compute individual fair-
ness by doing a pairwise comparison between candidates’ distance
in the feature space and their achieved exposure [27].

4 Toolkit Usage
Figure 2 provides an overview of the three main steps for utilizing
our toolkit, FairDiverse. We will describe each step of usage in
detail. The detailed configuration file parameters can be found
in https://xuchen0427.github.io/FairDiverse/.

4.1 Usage Steps
Step 1. First, download the dataset you wish to test, as described in
Section 3.1, and store it in the /dataset directory. Then, specify the
parameters in /properties/dataset/{data_name}.yaml. Next,
you need to review all default parameters for data processing, model
hyperparameters, and evaluation settings.
Step 2. Then, you need to create your own configuration file, spec-
ifying the selected models and the log directory path. If you want
to modify the default pipeline parameters, you can specify them
directly in your own configuration file, which will override the
values in the default configuration files.
Step 3. Enter /fairdiverse dictionary and execute the command

python main.py --task "recommendation"
--stage "in-processing" --dataset "steam"
--train_config_file "In-processing.yaml"

The args should specify the task (recommendation/search), stage
(pre-processing, in-processing, post-processing), dataset, and your
custom configuration file as defined in Step 2. Finally, the evaluation
results and item/user utility allocations will then be recorded in
your specified log file.
5Note that the evaluation metric NDCG in post-processing is slightly different from the
common definition: NDCG in post-processing means the re-ranking quality compared
to original ranking quality [61].
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4.2 Usage Example
Besides our provided main.py file and shell command, you can also
utilize the following test codes to run the toolkit.
Recommendation. Our repository includes an example dataset,
Steam.6 We provide the simple code snippets for running the in-
processing and post-processing models, which are listed below. The
user needs to specify the chooses “model,” “dataset” and “log_name”
for training and testing.

from recommendation.trainer import RecTrainer

config = {'model': 'BPR', 'data_type': 'pair', 'fair-rank':
True, 'rank_model': 'APR', 'use_llm': False,
'log_name': "test", 'dataset': 'steam'}

trainer = RecTrainer(train_config=config)
trainer.train()

from recommendation.reranker import RecReRanker

config = {'ranking_store_path': 'steam-base-mf', 'model':
'CPFair', 'fair-rank': True, 'log_name': 'test',
'fairness_metrics': ["GINI"], 'dataset': 'steam'}

reranker = RecReRanker(train_config=config)
reranker.rerank()

Search. Our repository includes a running example of the pre-
processing models on the COMPAS dataset. We provide the simple
code snippet for running the pre-processing models, listed as fol-
lows. One can set the “preprocessing_model” field to any of the sup-
ported models: CIFRank, LFR, gFair and iFair. Each pre-processing
model has its own config file under search/properties/models
which is automatically loaded based on your choice.

from search.trainer_preprocessing_ranker import
RankerTrainer

config={"train_ranker_config": {"preprocessing_model":
"iFair", "name": "Ranklib", "ranker": "RankNet", "lr":
0.0001, "epochs": 10}}

reranker=RankerTrainer(train_config=config)
reranker.train()

For the post-processing models, our repository also provides
a running example on the ClueWeb09 dataset. The simple code
snippet for running these models is shown as follows.

from search.trainer import SRDTrainer

config = {'model': 'xquad', 'dataset': 'clueweb09', 'task':
'search', 'mode': 'train', "log_name": "test",
"model_save_dir": "model/", "tmp_dir": "tmp/"}

trainer = SRDTrainer(train_config=config)
trainer.train()

6http://cseweb.ucsd.edu/~wckang/Steam_games.json.gz

5 Benchmark Results Analysis
In this section, we present an analysis of partial benchmark results
derived from our toolkit FairDiverse. Note that our goal is not to
compare different models but to highlight the analytical direction
of these results, helping researchers interpret and understand the
findings more effectively and efficiently.

5.1 Recommendation
In recommendation, we primarily evaluate the performance of
commonly used in-processing models, which integrate fairness
constraints during training, and post-processing models, which
adjust rankings after predictions to enhance fairness.
In-processingmodels. Table 3 presents the performance of the im-
plemented in-process fairness and diversity-aware models in terms
of accuracy (NDCG, HR, MRR) and fairness/diversity (MMF, GINI,
Entropy) under the default parameters of our toolkit. The bench-
mark results are obtained using the Steam dataset and BPR [52]
ranking models. The fairness/diversity metric is calculated at the
Steam game category level.

First, from Table 3, we observe that LLM-based models gener-
ally exhibit higher fairness and diversity but lower ranking perfor-
mance. In contrast, non-LLM-based models achieve better ranking
performance but struggle with the long-tail problem. Secondly, dif-
ferent methods often exhibit significant variance in accuracy and
fairness/diversity performance, excelling in some metrics while
underperforming in others. Moreover, the trends across different
fairness metrics are not always consistent.

Our toolkit provides researchers with a unified and convenient
tool to compare various methods, explore trade-offs between dif-
ferent metrics, and analyze the reasons behind performance gaps.
Researchers can use our toolkit to analyze results and validate their
ideas across different base models and datasets.
Post-processing models. Table 4 shows the results of imple-
mented post-process fairness and diversity-aware models in terms
of re-ranking accuracy (NDCG, u-loss) and fairness/diversity (MMF,
GINI, Entropy, and MMR). The benchmark results are obtained us-
ing the Steam dataset and the ranking lists provided from DMF [70]
models. The fairness/diversity metric is also calculated at the Steam
game category level.

First, from Table 3, we observe that post-processing models out-
perform in-processing methods in fairness and diversity. However,
they often face an accuracy-fairness trade-off, sacrificing accuracy
to enhance the fairness and diversity of item categories. With our
toolkit, FairDiverse, researchers can explore this trade-off across
different parameters, base models, and datasets.

5.2 Search
As for the search task, we first evaluate the output of a ranking
model trained on data that was debiased by a pre-processing model
and then observe the diversity of the final ranking results achieved
by post-processing models.
Pre-processing models. The results of implemented pre-pro-
cessing models applied on the input of a ranking model are denoted
in Table 5. In this setting the ranking model is RankNet using the
implementation provided by the Ranklib Library. We evaluate the

3545

http://cseweb.ucsd.edu/~wckang/Steam_games.json.gz


FairDiverse: A Comprehensive Toolkit for Fairness- and Diversity-aware Information Retrieval SIGIR ’25, July 13–18, 2025, Padua, Italy

Table 3: Partial benchmark results for recommendation tasks on Steam datasets for different ranking sizes𝐾 . They are evaluated
on BPR ranking models with in-processing fairness-aware and diversity-aware approaches. ↓ and ↑ indicate that a smaller or
larger metric value, respectively, corresponds to better model performance. It is important to note that the reported results are
based on default parameters.

Models/Metric 𝐾 = 10 𝐾 = 20

NDCG↑ MRR↑ HR↑ MMF↑ GINI↓ Entropy↑ NDCG↑ MRR↑ HR↑ MMF↑ GINI↓ Entropy↑

Llama3-FairPrompts 0.0304 0.0565 0.0265 0.0364 0.7332 3.8800 0.0444 0.1083 0.0308 0.0980 0.6201 4.3738
Qwen2-FairPrompts 0.0312 0.0546 0.0284 0.0324 0.7503 3.7629 0.0455 0.1070 0.0329 0.0871 0.6453 4.2590
Mistral-FairPrompts 0.0323 0.0559 0.0303 0.0315 0.7494 3.7751 0.0481 0.1132 0.0355 0.0861 0.6455 4.2602
APR 0.2925 0.2934 0.4085 0.0324 0.7257 3.9513 0.3193 0.2999 0.5058 0.0590 0.6485 4.2997
FairDual 0.3204 0.3073 0.4727 0.0330 0.7123 4.0301 0.3479 0.3136 0.5702 0.0563 0.6577 4.2745
IPS 0.3073 0.3090 0.4213 0.0249 0.7314 3.9183 0.3347 0.3155 0.5196 0.0570 0.6517 4.2824
Minmax-SGD 0.2672 0.2604 0.3961 0.0218 0.7501 3.7252 0.2958 0.2679 0.4991 0.0470 0.6936 3.9982
SDRO 0.3009 0.3056 0.4081 0.0350 0.7212 3.9754 0.3298 0.3124 0.5137 0.0619 0.6451 4.3156
FairNeg 0.2964 0.2975 0.4125 0.0673 0.6671 4.2222 0.3208 0.3036 0.5020 0.0778 0.6158 4.4067
FOCF 0.2879 0.2879 0.4041 0.0294 0.7272 3.9460 0.3141 0.2942 0.4992 0.0579 0.6472 4.3086
Reg 0.2979 0.2981 0.4162 0.0306 0.7270 3.9465 0.3245 0.3043 0.5127 0.0584 0.6497 4.2917

Table 4: Partial benchmark results for recommendation tasks on Steam datasets for different ranking sizes 𝐾 . They can be
evaluated using the shell command provided in our GitHub repository. It is important to note that the reported results are
based on default parameters.

Models/Metric 𝐾 = 10 𝐾 = 20

R-NDCG↑ u-loss↓ MMF↑ GINI↓ Entropy↑ MMR↑ R-NDCG↑ u-loss↓ MMF↑ GINI↓ Entropy↑ MMR↑

CP-Fair 0.9981 0.0035 0.2135 0.4424 4.8441 0.0196 0.9969 0.0055 0.2118 0.4349 4.9064 0.0301
min-regularizer 0.9272 0.1234 0.3984 0.1373 5.3796 0.2740 0.9359 0.0896 0.4004 0.1326 5.3818 0.2761
RAIF 0.9881 0.0233 0.2937 0.3293 5.0080 0.0248 0.9829 0.0302 0.3333 0.2585 5.1558 0.0358
P-MMF 0.9691 0.0536 0.3140 0.2792 5.1911 0.0685 0.9675 0.0482 0.3289 0.2429 5.2597 0.0987
FairRec 0.9529 0.1088 0.1866 0.5098 4.5372 0.0157 0.9497 0.0990 0.1779 0.5179 4.5234 0.0175
FairRec+ 0.9773 0.0540 0.1758 0.5254 4.5108 0.0119 0.9750 0.0510 0.1609 0.5463 4.4594 0.0134
FairSync 0.9816 0.0353 0.2477 0.3951 4.9152 0.0237 0.9785 0.0383 0.2553 0.3705 5.0165 0.0312
TaxRank 0.9438 0.1015 0.2421 0.3791 4.9846 0.0149 0.9303 0.1080 0.2907 0.3078 5.1287 0.0209
Welf 0.9668 0.0575 0.3216 0.2638 5.2254 0.0820 0.9682 0.0467 0.3322 0.2383 5.2674 0.1112

Table 5: Benchmark results for search task on the COMPAS dataset for different ranking sizes 𝐾 , obtained on RankNet ranking
models with pre-processing fairness-aware approaches. Evaluated using the shell command provided in our GitHub repository.
%D: diversity of the Female-Black group (the disadvantaged intersectional group); IGF: in-group-fairness measure as an average
over the groups; yNN: individual fairness; NDCG-loss: NDCG loss. The reported results are based on default parameters.

Models/Metric 𝐾 = 100 𝐾 = 300

%D↑ IGF↑ yNN↑ NDCG-loss↑ %D↑ IGF↑ yNN↑ NDCG-loss↑

RankNet 0.10 - 0.86 0.92 0.11 - 0.86 0.95
CIFRank 0.13 1.00 0.86 0.78 0.10 1.00 0.86 0.84
LFR 0.09 1.00 0.86 0.93 0.09 0.93 0.86 0.72
gFair 0.14 1.00 0.86 0.39 0.10 1.00 0.86 0.52
iFair 0.42 0.55 0.86 0.85 0.19 0.30 0.86 0.89

performance on the COMPAS dataset. NDCG-loss represents the
loss in utility w.r.t. the original ranking and the original scores.

All models, except LFR, manage to improve or maintain the
diversity in top-k of the Female-Black group, which is the most
disadvantaged intersectional group. Out of all models gFair has
the biggest loss in utility, while individual fairness (yNN) is not
affected. In-group-fairness (IGF) is measured on the transformed
representations, not on the output ranking, to check whether the
transformed data respects the order within a group. It can be ob-
served that CIFRank and gFair obtain perfect IGF. Using FairDiverse
researchers can compare the impact of pre-processing models on

the output ranking given the trade-offs between group fairness,
individual fairness and utility loss.
Post-processingmodels. The results of implemented post-process
search result diversification models are denoted in Table 6. We
evaluate the performance based on the ClueWeb09 dataset. The
initial ranking list is provided by Lemur.7 We utilize the top 50
documents from the initial ranking list for testing these diversified
ranking models’ performance.

From the results, we can observe that, first, supervised diversified
search models demonstrate superior performance compared to

7https://lemurproject.org/clueweb09.php/
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~/properties/models/YourModel.yaml

embedding size:  xxx

learning rate: xxx

other parameters: xxx

~/properties/models/In-process.yaml

~/properties/models/Post-process.yaml

rank_model:  YourModel

fair-rank: True

rank_model:  YourModel

#Re-weight In-processing model

Class YourModel(Abstract_Reweighter):

    def reweight(self, items): 

#return re-ranking list with size k

~/rank_model/YourModel.py ~/preprocessing_model/fair_model.py

Class YourModel(AbstractModel):

    def __init__(self, config):

    def fit(self, x_train, run):

 def transform(self, x_train, run):

Class YourModel(Abstract_Reranker):

    def __init__(self, config):

    def rerank(self, ranking_score, k):

#return re-ranking list with size k

~/rerank_model/YourModel.py

~/rank_model/__init__.py

from .YourModel import YourModel

~/trainer.py

if config[‘rank_model’] == “YourModel”:

   self.Fair_Ranker = YourModel(config)

3. Set up your 

model for the IR 

pipelines

2. Based on your 

model type, inherit the 

corresponding abstract 

class and write the 

code for your model.

1. Set your custom 

model parameters

Develop steps

Codes for 

pre-processing models
Codes for 

post-processing models

Codes for 

all models

#Regularizer-based In-processing model

Class YourModel(Abstract_ Regularizer):

    def fairness_loss(self, **kwargs):

#return fairness loss added to rank loss

#Re-sample In-processing model

Class YourModel(Abstract_ Sampler):

    def reweight(self, items): 

#return the sampled negative items

~/rank_model/__init__.py

from .YourModel import YourModel

~/reranker.py

if config[‘model’] == “YourModel”:

   ReRanker = YourModel(config)

~/ preprocessing_model/__init__.py

from .YourModel import YourModel

~/trainer_preprocess_ranker.py

fairness_method_mapping[‘YourModel’]

= YourModel

Codes for 

In-processing models

~/properties/models/Pre-process.yaml

Preprocessing_model: YourModel

ranker:  RankNet

Figure 3: The custom steps for fairness and diversity-aware search and recommender models named YourModel. The differently
colored areas indicate the code you need to add when developing different types of model. Generally, you can follow three
steps: (1) define custom model parameters, (2) develop your model based on its type, and (3) integrate it into the pipeline.
Table 6: Benchmark results for the post-processing search result diversificationmodels on the ClueWeb09 datasets with different
ranking sizes 𝐾 . We evaluate the performance using the shell command provided by the official Web Track which is also
available in our GitHub repository. A larger metric value indicates superior model performance. The reported results are based
on default parameter settings.

Models/Metric 𝐾 = 5 𝐾 = 10 𝐾 = 20

ERR-IA 𝛼-nDCG S-rec ERR-IA 𝛼-nDCG S-rec ERR-IA 𝛼-nDCG S-rec

PM2 0.2626 0.3292 0.4793 0.2824 0.3684 0.5708 0.2913 0.3989 0.6407
xQuAD 0.2002 0.2511 0.3961 0.2166 0.2838 0.4701 0.2272 0.3230 0.5761
DiversePrompts (GPT-4o) 0.2890 0.3514 0.4972 0.3054 0.3833 0.5791 0.3131 0.4099 0.6396
DiversePrompts (Claude 3.5) 0.3136 0.3800 0.4981 0.3292 0.4079 0.5741 0.3372 0.4348 0.6486
DESA 0.3497 0.4226 0.5195 0.3642 0.4452 0.5914 0.3703 0.4655 0.6438
DALETOR 0.2770 0.3362 0.4609 0.2948 0.3732 0.5644 0.3047 0.4085 0.6581

unsupervised models. Moreover, diversified rankers based on LLMs
consistently outperform traditional unsupervised methods. This
observation suggests that the knowledge acquired by LLMs during
the pre-training stage significantly enhances the diversity of search
results. To facilitate the exploration of these models, we present
FairDiverse, a comprehensive toolkit that enables researchers to
analyze various parameters, base models, and datasets.

6 Customizing Models in FairDiverse
We outline the steps for customizing and evaluating new IR models
using the APIs we provide. Detailed API descriptions and source
code can be found in https://xuchen0427.github.io/FairDiverse/.
The provided APIs can be used by installing them via pip:

pip install fairdiverse

6.1 Steps
Figure 3 illustrates the three key steps for implementing fairness-
and diversity-aware IR models named YourModel.
Step 1. Configure your custom model parameters and save them in
a newly created YourModel.yaml file in the /properties/models/
directory. Then you can change the model in the running configu-
ration file Post-processing.yaml.
Step 2. Select the appropriate Python abstract class from our pro-
vided options based on your model type and implement your model
in a newly created file, YourModel.py, stored in the corresponding
directory. You can use the integrated tools and common parameters
within the abstract class. Researchers only need to focus on design-
ing the model without worrying about the rest of the pipeline.
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Step 3. Configure your model for the training pipeline by following
these steps: import your custom model package in the correspond-
ing file (/model_type/__init__.py) and define the model in the
appropriate script (/train.py, /reranker.py).

6.2 Examples
Here, we provide two example codes demonstrating how to design
a custom search and recommendation model, respectively.

#/recommendation/rank_model/YourModel.py
class YourModel(Abstract_Regularizer):

def __init__(self, config, group_weight):
super().__init__(config)

def fairness_loss(self, input_dict):
return torch.var(input_dict['scores'])

#/recommendation/rank_model/__init__.py
from .YourModel import YourModel

#/recommendation/trainer.py
if config["model"] == "YourModel":
self.Model = YourModel(config)

#/search/preprocessing_model/YourModel.py
class YourModel(PreprocessingFairnessIntervention):

def __init__(self, configs, dataset):
super().__init__(configs, dataset)

def fit(self, X_train, run):
# Train the fairness model using the training set.

def transform(self, X_train, run file_name=None):
# Apply the fairness transformation to the dataset.

#/search/preprocessing_model/__init__.py
from .YourModel import YourModel
fairness_method_mapping['YourModel'] = YourModel

7 Related Work
Beyond-Accuracy in IR. In modern IR systems, beyond-accuracy
objectives play a crucial role in building a more effective and re-
sponsible ecosystem [24, 37]. Beyond-accuracy objectives primarily
include diversity [22], fairness [48, 61], novelty [32], and serendip-
ity [80]. Among these factors, this toolkit primarily focuses on
fairness and diversity.
Fairness and diversity in IR. Fairness and diversity are gain-
ing increasing attention in the IR field, as both seek to support
underrepresented user and item groups [20, 22, 43, 57]. Previous
studies have often explored fairness and diversity from the per-
spectives of different stakeholders, such as users and items [1], as
well as at varying granularities, including both group-level and
individual-level fairness [7, 61]. Based on different stages in the IR
pipeline, previous methods are often categorized into three types:
pre-processing [53], in-processing [15, 31, 38], and post-processing
approaches [22, 23, 61, 65]. As for the evaluation, they are also based
on different metrics, including the Gini index [25], MMF [61] in
recommendation, and 𝛼-nDCG [17], NRBP [18] in search. However,
fairness and diversity often lack unified evaluation settings. This

paper introduces FairDiverse, a benchmarking toolkit designed to
comprehensively assess different models under different IR tasks.
Fairness and diversity toolkits.Most fairness and diversity toolk-
its are implemented under classification tasks. For example, FFB [30]
implements diverse in-processing models for addressing group fair-
ness problems. Fairlearn[8], AIF360[5] and Aequitas[33] implement
the unfairness mitigation algorithms using Scikit-learn [40] API
design. However, these methods cannot be directly applied to rank-
ing tasks. Although some toolkits [81] have been proposed to in-
corporate fairness and diversityd in IR, they primarily focus on
recommendation tasks and implement only a limited number of
in-processing models. Our toolkit, FairDiverse, offers the most ex-
tensive collection of models, covering a wide range of fairness- and
diversity-aware algorithms across both search and recommendation
tasks. Moreover, FairDiverse is highly extensible, offering flexible
APIs for easy integration of new fairness- and diversity-aware IR
models, unlike other toolkits with complex class inheritance.

8 Conclusion & Future Work
We have presented FairDiverse, a comprehensive IR toolkit de-
signed to facilitate standardized evaluations of fairness-aware and
diversity-aware algorithms. FairDiverse offers three key advantages
over other toolkits. (1) It provides a comprehensive framework for
integrating various models at different IR pipeline stages; (2) It
implements 29 fairness- and diversity-aware models for 16 recom-
mendation and search base models; (3) It offers flexible APIs for
researchers to develop and integrate custom models.

However, a limitation of FairDiverse is that it only supports
single-round fairness- and diversity-aware IR models. It does not
yet support dynamic settings, such as long-term fairness or fairness
under dynamic feedback loops [66]. In future work, we plan: (i) to
include more LLM-based models [83]; (ii) to support dynamic sce-
narios and exploring the use of LLM agents [79] for simulation and
evaluation; and (iii) to incorporate more beyond-accuracy models,
including novelty- and serendipity-aware models.
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