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Pre-processing Fairness Interventions
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Needs access to sensitive info during inference time (*)
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Experimental Setup
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RankNetTask: given an occupation rank candidates 

Fairness 
Intervention

Group Fairness: Proportion@10 = percentage of each group in top-10

Individual Fairness: Similar individuals should receive similar exposure

1. Bios Bias
2. XING
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Influence on Group Fairness

Dataset Method %underrepresented 
in top 10

XING Original 30

CIF-Rank 32

LFR 32

iFair 30

BIOS Original 20

CIF-Rank 22

LFR 26

iFair 27

Positive change in 
group fairness
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Influence on Group Fairness

Dataset Method n occupations increase 
in overrepresented group 

XING Original -

CIF-Rank 17 (38%)

LFR 17 (38%)

iFair 20 (45%)

BIOS Original -

CIF-Rank 8 (28%)

LFR 7 (25%)

iFair 7  (25%)

Negative change in 
group fairness

n occupations increase in 
underrepresented group

-

22 (50%)

19 (43%)

14 (31%)

-

13 (46%)

20 (71%)

17 (60%)

Positive change in 
group fairness
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Influence on Individual Fairness

Dataset Method Individual Fairness

XING Original 0.85

CIF-Rank 0.85

LFR 0.85

iFair 0.85

BIOS Original 0.72

CIF-Rank 0.72

LFR 0.72

iFair 0.72

No change in individual fairness
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Fairness Interventions in Practice

Method Transparency IGF No access to 
sensitive info

Intersectionality Impact on 
diversity

CIF-Rank ✅ ✅ ❌ ✅ small changes

LFR ❌ ❌ ✅ supports only one 
binary group

more noticeable

iFair ❌ ❌ ✅ supports 
multinary groups 

and multiple 
groups

more noticeable 
but unstable



Conclusions

Legal requirements make many approaches difficult to use in practice → pre-processing techniques 

Group Fairness: unstable → both positive and negative changes.

Individual Fairness: was not affected.

In Practice: no method has it all → room for improvement
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Thank you!



CIF-Rank

Estimates what would this person 
data look like if they had been part of 
a different group?
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10

Y counterfactual = 
Y observed +  difference in Total Effect of 
the actual  group and  the control group



LFR 
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V1 V2
XM1 M2

LFR + iFair 

- formulates fairness as an optimization problem of finding a good representation of the 
data

- obfuscate the sensitive information in the data

- formulate the new representation in terms of a probabilistic mapping to a set of 
prototypes - points in the input space (V1, V2)
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Example of Data Points - BIOS Dataset
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Example of Data Points - XING Dataset



Art. 9 GDPR
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